This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
algorithms_primes [2018/08/08 16:40] jguerin Commented c++ source. |
— (current) | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Algorithms: Prime Numbers ====== | ||
- | |||
- | |||
- | ===== Prime Sieves ===== | ||
- | Prime sieves are common devices for generating prime numbers in a given range. These lists can be used for quick verification of relatively small prime numbers (typically ranging up to 10< | ||
- | |||
- | **Etymology: | ||
- | |||
- | ==== Sieve of Eratosthenes ==== | ||
- | <file python sieve.py> | ||
- | def sieve(n): | ||
- | primes = [True] * (n+1) # generate a list of primes | ||
- | primes[0] = primes[1] = False | ||
- | for i in range(2, int(sqrt(n))+1): | ||
- | for j in range(i**2, n+1, i): | ||
- | primes[j] = False | ||
- | return [i for i in range(len(primes)) if primes[i]] # generate primes from True values | ||
- | |||
- | primes = sieve(1000000) | ||
- | </ | ||
- | |||
- | <file c++ sieve.cpp> | ||
- | #include < | ||
- | #include < | ||
- | #include < | ||
- | #include < | ||
- | |||
- | using namespace std; | ||
- | |||
- | const int MAX_PRIMES=10000000; | ||
- | |||
- | vector< | ||
- | bitset< | ||
- | nums.set(); | ||
- | nums[0] = nums[1] = false; | ||
- | for(int i=2; i< | ||
- | for(int j=i*i; j<n+2; j+=i) | ||
- | nums[j] = false; | ||
- | |||
- | vector< | ||
- | for(int i=0; i< | ||
- | if(nums[i] == true) | ||
- | primes.push_back(i); | ||
- | |||
- | return primes; | ||
- | } | ||
- | |||
- | int main() { | ||
- | vector< | ||
- | |||
- | return 0; | ||
- | } | ||
- | </ | ||
- | |||
- | === Design Principles === | ||
- | Operation Sieve of Eratosthenes is quite simple. The sieve starts by assuming all numbers in a given range (2..n) are prime ('' | ||
- | |||
- | === Analysis === | ||
- | The Sieve of Eratosthenes is not the fastest prime sieve available, but it is quick to code, easy to understand and modify, and sufficiently fast for some practical applications. | ||
- | |||
- | **Time Complexity: | ||
- | **Space Complexity: | ||
- | |||
- | === Benchmarks === | ||
- | This implementation (Python3) should work reliably for primes up to 10< | ||
- | |||
- | === Source === | ||
- | Implementations are from the pseudocode provided in the Wikipedia article on the [[https:// | ||