User Tools

Site Tools


python3:lru_cache

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
python3:lru_cache [2018/11/03 16:30]
jguerin
python3:lru_cache [2019/05/07 12:43] (current)
jguerin
Line 1: Line 1:
 ====== LRU Cache ====== ====== LRU Cache ======
-Memoization is a common optimization technique where repeatedly computed values are cached for quick lookup. While memoization can be achieved by a relatively simple modification to many recursive formulations, Python3's [[https://docs.python.org/3/library/functools.html|functools]] library implements automatic memoization in the form of an LRU (least recently used) cache.+Memoization is a common optimization technique where repeatedly computed values are cached for quick lookup. While memoization can be achieved by a relatively simple modification to many recursive formulations, Python3's [[https://docs.python.org/3/library/functools.html|functools]] library implements automatic memoization in the form of an LRU (least recently used) cache as a [[https://www.python.org/dev/peps/pep-0318/|function decorator]].
  
  
 ===== The Fibonacci Sequence ===== ===== The Fibonacci Sequence =====
-The [[https://en.wikipedia.org/wiki/Fibonacci_number|Fibonacci]] sequence (f<sub>n</sub> = f<sub>n-1</sub>+f<sub>n-2</sub>) is a canonical example of a naive recursive function with exponential complexity.+The [[https://en.wikipedia.org/wiki/Fibonacci_number|Fibonacci]] sequence (//f<sub>n</sub> = f<sub>n-1</sub>+f<sub>n-2</sub>//) is a canonical example of a naive recursive function with exponential complexity. 
 + 
 +The naive implementation is exponential. The second example using the LRU cache shows little growth up to moderately large values of //n//. 
 <file python fibonacci.py> <file python fibonacci.py>
 def fib(n): def fib(n):
Line 14: Line 17:
 </file> </file>
  
 +<file python fibonacci_lru.py>
 +from functools import *
 +
 +@lru_cache(maxsize=None)
 +
 +def fib(n):
 +    if n < 1:
 +        return n
 +    return fib(n-1) + fib(n-2)
 +
 +print(fib(300))
 +</file>
 +
 +==== Benchmarks ====
 +The naive recursive implementation fails quickly as expected (at nearly a minute for //n=//40).
 +
 +^ %%n%%          ^ fibonacci.py((Python 3.5.2))          ^ fibonacci_lru.py          ^
 +^ 10    | .016s     | .0224s        |
 +^ 20    | .0216s    | .0232s        |
 +^ 30    | .4664s    | .0216s        |
 +^ 40    | -         | .0248s        |
 +^ 50    | -         | .024s         |
 +^ ...   | ...       | ....          |
 +^ 100   | -         | .0192s        |
 +^ 200   | -         | .024s         |
 +^ 300((300 was the chosen cutoff because at 400 we encounter a "maximum recursion depth exceeded" error in Python3. Greater values can be attempted by [[python3:recursion_depth|adjusting the stack limit]].))   | -         | .0232s        |
  
python3/lru_cache.1541280618.txt.gz · Last modified: 2018/11/03 16:30 by jguerin